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Particle Filter is a significant member of the group of methods aiming to provide reasonable solutions to the real-world 

problems by approximating the value of the posterior density function using probabilistic sampling. Particle filtering has 

been increasingly used by researchers for the last two decades with the advancements occurred in computational 

resources in order to solve such problems. This paper focuses on Particle Filtering in a way to be a complete tutorial for the 

beginner researchers by means of providing a quick theoretical framework of Particle Filtering in a step-by-step 

progressive manner starting with Bayesian Inference as well as providing a stimulating multi-target tracking example 

problem with solution. 
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1. Introduction  
 

There exist so many systems and services in use today, 

in order to ensure daily-life requirements in certain areas 

such as health, education or production; to raise the quality 

of human life through a great variety of services in 

transportation, telecommunication or entertainment; to 

seek answers for eternal questions of existence concerning 

mankind, living creatures or universe by continuous 

scientific research initiatives; and to surpass other 

countries in global competition with regards to economy, 

politics or military. Disease diagnosis by MR imaging, 

traveling by plane as an extremely complex system, 

entertainment experience with motion-sensitive games on 

game consoles, conducting research with unmanned air or 

underwater vehicles, effective business management by 

fleet tracking systems, increasing international deterrence 

by nuclear powered missiles and a huge number of others 

may be considered as the examples of such systems and 

services. Almost all of the systems and daily-life 

facilitating services mentioned above are actually required 

some very tough technical problems including 

single/multiple target tracking, inertial/GPS navigation, 

audial/visual signal processing and natural events 

estimation to be solved mostly in real-time with acceptable 

accuracy and robustness rates. In other words, it is 

necessary to extract practicable information from the data 

obtained by several types of sensors such as mechanic, 

optic, acoustic, haptic, environmental or navigation in 

order to put the developed systems into force and to 

operate them efficiently. Likewise, changing needs and 

conditions, expectations for higher living standards and of 

course exploration-driven nature of human being imply 

novel and more capable systems and services to be 

introduced with each passing day. Hence, modern systems 

equipped with better hardware and sensors at the same 

time supported by smarter software gain currency today 

more than ever. The most significant requirement from the 

point of architectures for such type of systems is to have a 

kind of mechanism allowing acquiring information at any 

time associated with the states of the system in order to 

take the appropriate action [1]. However, in most 

situations it is quite difficult to reach this information 

without any restrictions due to the non-linear and non-

Gaussian structures. Within this context, the requested 

information about the system states which is not directly 

obtainable is attained via the available sensor 

measurements, of course, in a distorted form owing to the 

noise [1]. The noise is included through both dynamic 

system process and measurements. In this case, it is needed 

to remove noise from obtained data in order to form a 

basis for estimating the value of parameters contained by 

the system states. The act of providing such a basis 

undoubtedly refers to the well-positioned research field 

namely “Estimation Theory” and “Filtering” which can be 

deemed as its sequential and time-dependent application 

by a majority.  

In this paper, theory of estimation and optimal 

filtering is briefly introduced with historical milestones. 

Optimal filtering is also handled from Bayesian point of 

view in detail and the well-known non-linear filtering 

methods based on Bayesian estimation are outlined with 

merits and disadvantages as well as with familiar 

applications. Particle filter (PF) which is one of the most 

preferred methods of probabilistic estimation in recent 

years is given both providing the derivation of its 
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equations and the explanation of its algorithm. The study is 

supported by a particle filter based real-time multi-target 

tracking example with formulation of the system dynamics 

and observation models and the implementation results.  

Actually, there exist a considerable number of books, 

dissertations, review papers and tutorials related to 

recursive Bayesian estimation and particle filtering.  

Although it is not claimed that this study is outstanding 

with reference to the existing works within the field, 

several shortcomings found in the examined studies are 

simply addressed.  Some of the papers regarding this study 

are written by physicians or statisticians in which different 

terminologies are used and various concepts in theory of 

probability are emphasized for certain problems unfamiliar 

to the engineering society. Some other works include deep 

theoretical definitions and complex derivations which are 

not made easier to understand the principal topic of 

interest. In some of the studies, the derivations of PF are 

given disconnectedly which makes difficult to comprehend 

the underlying process of evolution. Some other studies, on 

the other hand, are not included any numerical or tangible 

examples which prevent to thoroughly get familiar to the 

probabilistic estimation which has intensively abstract 

concepts by definition. It is aimed to form a kind of quick 

start guide for the researchers newly entered into the field 

of Bayesian non-linear filtering. An expositional statement 

with a step by step progress starting from basic Bayes’ 

Rule to particle filtering algorithm is adopted throughout 

this study providing a multi-target tracking problem with 

its formulation, analysis and solution. 

 

 

2. Particle filtering theory  
 

a. Estimation theory & filtering  

 

Estimation theory (E.T.) is a field, focusing on 

estimating observed system parameters based on empirical 

findings and statistical analysis. Methods of E.T. attempt 

to predict the value of an unknown magnitude (i.e., 

position of a ship with respect to radar base) which is not 

directly accessible in most situations as accurately as 

possible through noisy observations [1][21]. E.T. has a 

wide range of possible applications in numerous fields 

such as signal processing, quality control, 

telecommunication, software engineering, project 

management and network intrusion detection [14]. The aim 

of the E.T. methods is always to construct an optimal (i.e., 

capable of inferring all available information) and 

implementable estimator which accepts measurement data 

and produces the estimation of requested system 

parameters [22]. Researchers usually regard estimation and 

filtering in the same meaning such as emphasized in [1] 

and [23]. While filtering has different definitions in 

various fields, basically it is a process of separating a 

mixture of signals into requested and needless fractions 

[23]. Thus, it is allowed that the requested part of the 

signal can be evaluated expediently. Filtering in this sense, 

may be considered as an application of estimation theory. 

Filtering methods try to reveal behaviors of the observed 

system so as to provide a basis for further analysis by using 

measurement data and the transition relationship between 

consecutive states of the system. The states of the real-

world systems are usually hidden and the useful 

information can only be obtained by processing on 

observation data corrupted by incongruent noise. Filtering 

is said to be an essential application of most real-world 

problems within this context. 

Estimation, as a technical field of research, was 

brought to scientific literature for the first-time by the work 

of K. F. Gauss regarding the estimation of planet motions. 

The method of “Least-Squares” which is considered in 

scientific society as an ancestral method of E.T. was firstly 

developed by Gauss in the end of 17th century and by 

Legendre later on in the very beginning of 18th century 

independent of each other [21]. The second milestone in 

the field of E.T. is the introduction of the method 

“Maximum Likelihood Estimation (M.L.E.)” in 1912 by R. 

A. Fisher who first uses a number of very important field 

concepts and definitions such as “parameter”, “likelihood”, 

“Bayesian” [24]. The M.L.E. method is considered as a 

basis for many inferential techniques in statistics [25]. 

Another very important advancement in the field, occurred 

with the development of the method “Linear Minimum 

Mean Square Estimation” successively and independently 

by Kolmogorov in 1941 and Wiener in 1942. The 

importance of this method, in particular, arises from 

constituting the foundations of the well-known and perhaps 

the most remarkable progress in the field: Kalman Filter 

(KF) [21]. 

Kalman filter, developed by R. E. Kalman in 1960, 

traces its origins from the “Least-Squares” method. 

However, a number of factors such as method’s 

convenience for state estimation of time-varying systems 

through both continuous and discrete observations, and 

change of problem formulations with the availability of 

state-space representation which allows difference and 

differential rather than integral equations to be used and 

also provides a basis for recursive algorithms to be 

effectively applied, have made KF method receives 

significant attention from researchers of various fields. In 

addition, KF equations providing a highly practical 

procedure for digital computer implementation and the 

method’s allowance for real-time estimation open the door 

for great improvements in the fields of filtering and 

estimation at least within the subsequent three decades 

[21]. After the development of the KF., the applications of 

E.T. has appeared in a wide variety of fields including 

satellite navigation, planetary orbit estimation, control 

theory, video tracking systems, geodesic research, 

neuroscience, machine learning, telecommunications, 

signal processing, economy, finance, political sciences, 

operations research and bio-engineering with an ever-

increasing use up to early 1990s. Detailed information on 

Kalman filtering theory, equations with derivations and 

various applications can be found in [26], [27] and [28]. 

Kalman filter was first derived as a mean squared 

error minimizer method. In fact, it was implemented in 
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later years [1] in terms of a different field of research 

namely Bayesian inference which is the inclusive scope of 

approaches approved to follow in addressing the problem 

of object tracking throughout this study.  

 

b. Bayesian inference & optimal Bayesian filtering 

 

Bayesian inference is a general inference framework 

utilizing the Bayes rule and a number of other methods 

belong to the theory of probability [14]. The main base of 

Bayesian inference is the well-known Bayes rule invented 

by 18th century mathematician and theologian Thomas 

Bayes. Actually, the general form of Bayes’ theorem 

known today was derived by P. S. Laplace in 1814. 

Laplace is accepted as one of the pioneer researchers in the 

field of probability today due to his development of 

Bayesian inference and applying probability to numerous 

fields [21]. The fundamental philosophy of the Bayesian 

approach claims that existing beliefs about an event may 

be changed depending on obtained new evidence. In the 

light of this philosophy, it is obviously seen that the 

problem of state estimation in the sense of time-varying 

dynamic systems can be readily attacked by Bayesian 

inference based methods. Besides, the solutions gained 

through Bayesian inference are viewed as “optimal” for 

many linear and Gaussian scenarios. In this regard, 

Bayesian inference was involved in filtering literature by 

numerous studies namely “Optimal Bayesian Filtering 

(O.B.F.)” [14,21]. 

In O.B.F., the state space representation of the 

problem is replaced with the probabilistic forms of 

dynamic and observation models that are ideally suited for 

the Bayesian approach. It is aimed to construct the 

posterior probability density function (pdf) of the state 

based on all available information with the set of received 

measurements in using O.B.F. for dynamic state 

estimation. The posterior pdf can be considered as the 

entire solution to the estimation problem due to the fact 

that it contains all available statistical information with the 

feasibility of providing an optimal estimate of the state 

[29]. It is needed to generate an estimate just after 

receiving a new measurement for many state estimation 

problems. In this case, a recursive filter allowing the 

received data can be processed sequentially is a convenient 

solution. O.B.F. also called Recursive Bayesian Estimation 

(R.B.E.) in the literature is a recursive filtering approach 

having two main stages: Prediction and update. The 

dynamic model including process noise is used to predict 

the state pdf in the prediction stage and the latest 

measurement is employed through noisy observation 

model to refine the predicted state pdf in the update stage. 

These two stages are executed consecutively with Bayes’ 

theorem as the underlying mechanism, until certain 

conditions have been met. 

 

c. Sub-optimal Bayesian filtering 

 

O.B.F., in fact, can be deemed as a general form of KF 

where both system dynamics and measurement models are 

linear and disturbed by Gaussian noise [12]. However, 

most of the real-world systems are non-linear and also non-

Gaussian [5,6]. There exists no closed form or analytical 

solution of state estimate for such type of systems [2-4,12]. 

Arising from this situation, various sub-optimal Bayesian 

approach based filtering methods have appeared in time. A 

taxonomy of those methods can be found in [4]. Extended 

Kalman Filter (EKF) is probably one of the earliest and the 

most well-known methods of such type, based on 

linearization of the system using Taylor series and simply 

applying KF solution subsequently [6,7]. EKF. has been 

widely used for long years in solving problems of diverse 

fields but it was replaced by other methods due to its poor 

response for the case of non-linearity with high degrees 

[7,10]. Gaussian Sum Filter (GSF) is another method 

attacking non-linear estimation problems by using local 

linearization similar to EKF. Actually, the GSF is a method 

executing a set of EKF in parallel [8]. The underlying 

principle of the GSF is to approximate the requested 

posterior density by a weighted sum of Gaussian density 

functions [8]. The performance of GSF is based on the 

selection of the number of mixture components and their 

weights depending on measurements. It has been shown 

that the filtering estimates produced by GSF are more 

unbiased in comparison with EKF [5]. The use of GSF is 

quite reasonable when the posterior density is multi-modal, 

on the other hand, the method has a disadvantage of 

keeping the weights of Gaussian mixture as constant while 

propagating the uncertainty through the nonlinear system 

and updating the weights only in the presence of 

measurement data [5]. The Unscented Kalman Filter 

(UKF) is a relatively new approximate filtering method 

with respect to EKF and GSF. UKF employs a statistical 

linearization technique based on picking a set of sample 

points around the mean and propagating these points 

through the non-linear system. A faster and 

computationally inexpensive solution with more accurate 

estimates is produced by UKF with respect to both EKF 

and GSF [5][9]. Another group of approximate Bayesian 

non-linear filtering methods is the collection of grid based 

methods (GBMs) using numerical integration to solve 

multi-dimensional integrals and accordingly to 

approximate the posterior pdf of the state [5]. The main 

drawback of GBMs is the dramatic increase of the 

computational cost in the existence of high-dimensional 

state space. As a consequence, the performance of GBMs 

in general is open to question due to the high-

dimensionality exposed by almost any contemporary non-

linear system [2][10]. 

Another branch of methods to deal with non-linear 

state estimation from the point of Bayesian philosophy is 

sampling based approaches. Such approaches, in fact, are 

various implementations of recursive Bayesian filter by 

Monte Carlo (MC) simulation technique [2]. MC 

simulation technique traces its origin from a simple 

random number generation operation on a roulette by 

1770s, however, it has drawn the attention of physics, 

statistics and engineering communities in sequence starting 

from the Second World War to subsequent few years [2]. 
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The basic principle of MC based sampling methods is to 

represent the requested posterior density function by a set 

of weighted random samples [13]. It can obviously be seen 

that in such a representation, using more random samples 

inherently provides a more approximate version of usual 

posterior pdf and a closer prediction to the optimal 

Bayesian estimate. MC methods have both advantages and 

limitations. The main advantage of MC methods over other 

approximation methods is the reduction of the 

approximation error variance regardless of the dimension 

of the state space. MC methods, on the other hand, expose 

two fundamental disadvantages: difficulty of sampling 

high-dimensional probability distribution and increasing 

computational complexity in case of sampling is possible 

[14]. As might be expected, the latter is overcome by ever-

increasing computational resources. The problem of 

sampling difficulty by MC methods, on the other hand, 

conduced to the improvement of two main classes of 

algorithms namely Markov Chain Monte Carlo (MCMC) 

and Sequential Monte Carlo (SMC). 

MCMC methods such as Metropolis-Hastings and 

Gibbs methods are based on sampling directly from a 

target distribution by defining a proper Markov Chain such 

that its stationary distribution is identical to the target 

distribution [35]. A detailed explanation of MCMC based 

sampling methods with applications can be found in [17]. 

SMC methods are referred in the literature with different 

names such as bootstrap filtering, the condensation 

algorithm, particle filtering and survival of the fittest [2]. 

Particle Filtering, as the preferred definition for SMC 

approach is the primary interest of this study. PF is based 

upon the idea of sampling from a proposal distribution 

rather than the target distribution which may not be 

convenient to sample from [13]. The proposal distribution 

(also called importance function) usually allows drawing 

samples and evaluating the target pdf for given samples. 

Thus, it becomes possible to obtain samples with 

importance weights with respect to the target pdf. Because 

the successive steps of the algorithm strongly rely on the 

samples obtained by importance sampling, the proper 

selection of the importance function in PF is crucial [2]. 

Otherwise, useless solutions can simply be encountered. 

PF has been formally introduced by [15]. Since then, 

numerous successful applications of PF have been 

presented in various fields such as signal processing, 

robotics, and computer vision [10][31]. Although there 

exist a number of improved variants of PF in the literature 

today, such as Unscented PF [18], Ensemble PF [19] and 

Rao-Blackwellized PF [20], the basic PF is addressed in 

this study in accordance with the aim of making easier to 

comprehend the recursive Bayesian estimation and 

subsequently probabilistic sampling based estimation. 

In particle filtering, usually, no assumptions are made 

about the problem addressed [10]. The problem can be 

associated with a non-linear and non-Gaussian dynamic 

system. However, two main issues should be taken into 

consideration: (i) high dimensionality of the state space, 

(ii) dynamics and observation models of the system [3,35]. 

While the first issue is highly overcome by today’s 

computational resources, resolving the second issue 

strongly depends on difficulty of the problem and built 

methodology for the solution including received 

measurements and extracted information. Acceptable 

solutions can be obtained by using convenient system 

dynamics and observation models. 

 

 

3. Particle filter derivation  
 

a. Dynamic systems and state-space representation 

 

It is firstly required to learn definition of a system 

from a technical perspective in order to comprehend 

dynamic system concept. A system can be defined as an 

entirety consisting of interrelated components. If the 

behaviors of the system change in time then the system is 

described as dynamic. Process can be stated as the 

evolution of a dynamic system in time. A dynamic system 

can be linear or non-linear in terms of relationship between 

its consecutive states. Behaviors of a dynamic system are 

observed by generating mathematical models depending on 

this transition relationship. It is mostly required to examine 

extremely small changes of the value of some parameters 

with respect to others due to the requirement of finding 

more accurate and more general solutions. Within this 

context, dynamic systems that are mostly continuous in 

time are generally modelled by changes in velocity and 

acceleration of the state vectors. In such situations, 

mathematical model of the observed dynamic system is 

obtained by using first and second order derivatives for 

velocity and acceleration changes respectively. The states 

of some specific dynamic systems are required to be 

known in certain time steps. The next time step is modeled 

as a function of current time step for such systems and 

difference equations are employed in models in place of 

differential equations. 

Almost all systems in real-world exist as dynamic 

systems, have non-linear state transition functions and 

contain high level uncertainties (i.e., non-Gaussian noise) 

associated with their parameters. Dynamic systems are 

firstly needed to be represented mathematically in order for 

performing a state estimation. State-space models are the 

most common type of representation for this purpose [30]. 

There are two models in state-space representation: 

dynamic and observation models. 

Dynamic model defines the evolution of state vector in 

time which contains estimation of the requested system 

parameters. 

 1 1 1, ,   0k k k kx f x v k                         (1) 

 

where kx  is the state vector to be estimated; k  is the time 

step; 
1kf 
 is a non-linear function; and 

1kv 
 is the process 

noise. Observation model describes the relationship 

between state vector and received measurements. 

 

 , ,   0k k k kh x wz k                          (2) 
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where 
kz  is the measurement vector obtained at time 

step k ; 
kh  is the measurement function; and 

kw  is the 

measurement noise. 

 

b. Probabilistic representation of dynamic systems 

 

Probability based representation of dynamic systems is 

a way applied particularly in case of Bayesian methods are 

at issue. In such situations, Bayesian methods are 

employed so as to provide approximate solutions by 

stochastic modelling of system dynamics and inferring 

statistical properties of requested system parameters. 

Hence, dynamic processes and the uncertainties in sensor 

measurements are assumed as stochastic processes such as 

speech signal, digital computer data, or noise while 

building probabilistic models. A stochastic process is a 

collection of random variables,  kX  indexed by 

time k which is used to express the time evolution of a 

statistical event according to probabilistic laws. In fact, it 

is involved enormous number of random variables in 

working with stochastic processes. The number of the 

random variables may be finite or infinite depending on the 

parameter space of processes under evaluation. Probability 

distribution of a random variable is the main property 

characterizing itself. The probabilistic characterization of a 

random process is derived from the joint probability 

distribution of underlying random variables. Therefore, 

joint distribution and some statistical parameters such as 

mean, covariance and correlation of random variables are 

investigated for dynamic systems modelled as stochastic 

process allowing computerized solutions. Within this 

context, for the case where the state of the system is 

assumed as a Markov stochastic process, the posterior pdf 

of a dynamic system can be expressed as in Eq.(3): 

 

(3) 

 

where 0( )p x   is the prior distribution at time step 0, and 

~  symbol characterizes the sampling process of 

independent and identically distributed random variables 

from a sequence. Similarly, the observation model is 

constructed as in Eq.(4) where  |k kp z x  is the observation 

likelihood. 

 

(4) 

 

Through this representation, behaviors of the dynamic 

system are examined and values of the requested 

parameters are estimated probabilistically by modelling 

state transition and measurement equations as conditional 

probabilities. 

 

 

c. Recursive Bayesian estimation 

 

Particle filter which is also known as Sequential 

Monte Carlo, is a generic name for the methods 

implementing an improved version of importance sampling 

recursively in order to approximate posterior pdf and 

providing a basis for analyzing the states of dynamic 

systems by employing recursive Bayesian estimation. 

All available information regarding system dynamics 

should be included into the probabilistic estimation model 

while intending to estimate the parameters of a discrete-

time dynamic system with a reasonable accuracy level. In 

such systems, measurements can only be obtained in 

certain time steps even though the system evolves 

perpetually. Current measurement information is required 

to be used in order for estimating the parameters of the 

next state of dynamic system without receiving a new 

measurement. It is obviously needed a recursive 

mechanism for this type of usage. Such a mechanism can 

be obtained using Bayes’ Rule with Markov chain 

assumptions.  

A discrete-time dynamic system with finite states is 

modeled using discrete time Markov process forming a 

stationary distribution in time and having its current state 

depends only its previous state. The two main assumptions 

of discrete time Markov process are expressed as in Eq.(5) 

and Eq.(6) respectively. 

(i) The current state of the system is detached from all 

past states and measurements received at those time steps 

except the previous system state. 

 

   0: 1 1: 1 1| ,   |k k k k kp x x z p x x                    (5) 

 

where n

kx R  represents the state vector and m

kz R  is 

the measurement vector at time step k .  

(ii) The measurement information received at current 

time step is free of all past states of the system and 

measurements obtained at that time steps, however it 

depends on the current state. 

 

   1: 1 0:| ,   |k k k k kp z z x p z x                      (6) 

 

The joint distribution of random variables representing 

states of a discrete-time dynamic system in each time step 

are expressed by using Bayes Theorem, chain rule of 

Probability Theory and Markov process assumptions in 

R.B.E. 

In the first step, the joint distribution of random 

variables is written in terms of substantial state transition 

probabilities. In the second step, the posterior pdf of 

discrete-time dynamic system is stated using Bayes 

Theorem as below: 

 

 

 

 
   

 
 

   

 
1: 0: 0:

0: 1:

1:

|
|  

|
       | k k k

k k

k

p B A p A
p AB

p B

p z x p x
p x z

p z


 


   (7) 

 

where  0: 1:|k kp x z  is the joint probability distribution of all 

 
1

00: 1( ) ~ ( ) |
k

k i i

i

p x p x p x x 





   1: 0:

1

| ~   |
k

k k i i

i

p z x p z x



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states given all measurements up to time step k .  1: 0:|k kp z x  

is defined as likelihood of all measurements given all 

system states up to time step k  . 

 

   1: 0: 1: 1 0:| , |k k k k kp z x p z z x                    (8) 

 

Eq.(8) can be formed using Chain Rule of Probability 

Theory.  1: 1 0:, |k k kp z z x  is substituted for  1: 0:|k kp z x  in 

Eq.(7) and Eq.(9) is obtained. 

 

 
   

 
1: 1 0: 0:

0: 1:

1:

, |
| k k k k

k k

k

p z z x p x
p x z

p z

 
               (9) 

     1: 1 0: 1: 1 0: 1: 1 0:, | | , |k k k k k k k kp z z x p z z x p z x      (10) 

 

Similar to forming Eq.(8), Eq.(10) can also be written 

by using Chain Rule. Eq.(11) is constructed by substituting 

Eq.(10) in Eq.(9). 

 

1: 1 0: 1: 1 0: 0:
0: 1:

1:

( | , ) ( | ) ( )
( | )

( )

k k k k k k
k k

k

p z z x p z x p x
p x z

p z

  
    (11) 

 

 
   

 
0: 1: 1 1: 1

1: 1 0:

0:

|    
| k k k

k k

k

p x z p z
p z x

p x

 




                (12) 

 

Using Bayes Rule, an equality can ordinarily be 

constituted as in Eq.(12). The expression  1: 1 0:|k kp z x  in 

Eq. (11) is replaced by its equivalent in Eq.(12) and 

Eq.(13) is achieved as below. 

 

0: 1:
1: 1 0: 0: 1: 1 1: 1 0:

1: 0:

( | , ) ( | ) ( ) ( )
( )

( ) ( )
|k k

k k k k k k k

k k

p z z x p x z p z p x
p

p z p x
x z   

  



(13) 

 

Eq.(14) is obtained by performing the required 

simplifications on  Eq.(13). 

 

 
     

 
1: 1 0: 0: 1: 1 1: 1

0: 1:

1:

| , |
|

k k k k k k

k k

k

p z z x p x z p z
p x z

p z

   
 (14) 

 

     1: 1: 1 1: 1|k k k kp z p z z p z                   (15) 

 

Eq.(15) is formed by using chain rule one more time. 

 1:kp z  in Eq.(14) is replaced by its equivalent in Eq.(15) 

and Eq.(16) is obtained.  

 

0: 1:
1: 1 0: 0: 1: 1 1: 1

1: 1 1: 1

( | , ) ( | ) ( )
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Eq.(17) is formed by simplificating Eq.(16). 
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In this step, Eq.(18) is achieved by using the second 

assumption of Markov Process given in Eq.(6). 
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     0: 1: 1 0: 1 1: 1 0: 1 1: 1| | , |k k k k k k kp x z p x x z p x z       (19) 

 

Eq.(19) can be written by employing Chain Rule. The 

expression  0: 1: 1|k kp x z   in Eq.(18) is substituted by its 

equivalent in Eq.(19) and Eq.(20) is obtained. 
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Eq.(21) is derived by applying the first assumption of 

Markov Process given in Eq.(5). 
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     (22) 

According to Bayes Rule, the denominator  p z , also 

called evidence, in Eq.(22) is in fact the marginal 

probability distribution of the nominator terms and it has 

no effect on the value of posterior probability 

distribution  |p x z . Thus,  p z  is considered as a 

normalizing constant. 

 

     1: 1 0: 1: 1| | |k k k k k k kp z z p z x p x z dx               (23) 

It is therefore, the expression  1: 1|k kp z z   in Eq.(21) is 

replaced by its equivalent given in Eq.(23) and Eq.(24) is 

achieved. 
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1 1
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The equivalent of normalizing constant   in Eq.(24) 

is substituted in Eq.(21) and Eq.(25) is formed. 

 

       0: 1: 1 0: 1 1: 1| | | |k k k k k k k kp x z p z x p x x p x z       (25) 

 

Eq.(25) can be ordered as in Eq.(26) where the symbol 
  means “up to a normalizing constant”. 

 

       0: 1: 1 0: 1 1: 1| | | |k k k k k k k kp x z p z x p x x p x z      (26) 

 

where  0: 1:|k kp x z   is the posterior pdf of the system and  

 |k kp z x  is the likelihood of observation given system 

state at time step k ;  1|k kp x x   is called 

transition(temporal) prior; and  1 1: 1|k kp x z   is the 

posterior pdf of the system at previous time step. With this 

formulation in Eq.(26), a recurrence is acquired so as to 
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the posterior pdf of the system at any time step can be 

obtained using the previous posterior pdf recursive 

Bayesian estimation consists of two phases: prediction and 

update. In prediction phase,  1: 1|k kp x z   distribution is 

predicted without receiving the measurement at actual time 

step. The value of      0: 1: 0: 1: 1|   | |k k k k k kp x z p z x p x z    

expression is calculated using measurement likelihood at 

actual time step and the posterior pdf of the previous time 

step is updated in update phase. 

 

d. Problem formulation with particle filter 

 

The last form of Eq.(18) is obtained as Eq.(28) by 

substituting Eq.(27) which is also known as Chapman-

Kolmogorov equation and Eq.(23).  
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Eq.(28) is the final form of R.B.E. It is mostly 

impossible to calculate the integrals in this equation 

analytically except very special conditions and strong 

assumptions. Therefore, the common way in the literature 

is to approximate the posterior pdf  0: 1:|k kp x z   through 

various methods such as EKF, UKF, GSF, MCMC or PF 

which is the focal point of this study. 

Problem formulation with PF requires MC simulation 

concept and importance sampling method to be known. 

MC is a collection of methods aiming to produce 

approximate results for the values of integrals which are 

impossible to evaluate analytically. MC simulation based 

methods try to find the approximate values of the integrals 

as shown in Eq.(29) below. 

 

     I f x dx g x p x dx                      (29) 

 

where  f x ,  g x  are any functions of x  and  p x  is 

the pdf of x . It is assumed that is possible to obtain 

independent random samples from the associated pdf. 

According to the Strong Law of Large Numbers (Eq.(30)), 

the mean of a known random variable sequence 

approximates to its expected values while the number of 

samples goes to infinity. Thus, it is verged on the value of 

the integral under evaluation while more samples are 

available.  
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f x E f x f x p x dx
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In this context, the expected value of 
0:kx  is expressed 

as in Eq.(31) below: 
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where  0: 1:|k kp x z  is the pdf of x  and  .  is a function of 

0:kx . This expected value is approximated by MC 

simulation based methods as in Eq.(32). 
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According to the Central Limit Theorem, sum of 

enormous number of random variables approximate to 

Gaussian distribution as shown in Eq.(33) below:  
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           (33) 

where 
ix  is an independent random variable sequence,   

is the mean and 
2  is the finite variance. It can be seen in 

this situation that the approximation of MC simulation is 

suitable and unbiased. 

Accept-Reject, Inverse CDF Transform, Control 

Variable and Importance Sampling can be considered 

among MC simulation methods. However, importance 

sampling method as the base of particle filtering is 

exclusively explained in this study. It is primarily required 

to be familiar with the importance sampling method in 

order to be comprehended particle filtering. Importance 

sampling method approximates the value of target integral 

as shown in Eq.(34):  
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where  x  is a pdf impossible to sample and  q x  is 

called proposal distribution or importance function 

implying     0 0, nx q x x     R  condition.  

Unnormalized and normalized importance weights are 

expressed in Eq.(35) and Eq.(36) respectively as below: 
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where  iw x  is the importance weight sequence. It can be 

seen in Eq.(36) that normalized importance weights is 

proportional to the ratio of target pdf over importance 

function.  

In particle filtering, the target posterior pdf is 

approximated by Eq.(37): 
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where  .  is the Dirac-delta function, 
 
0:

i

kx  is the i th 

particle and 
 i
kw  is the normalized weight of that particle 

at time step k  as shown in Eq.(38).  
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It is started with Eq.(39) in particle filter problem 

formulation by omitting the normalizing constant  |
1: 1

p z z
k k

 

in Eq.(21) obtained by recursive Bayesian estimation 

(Eq.(21)). 
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In this step, it is required to select an importance 

function (proposal distribution). If this selection is 

performed as in Eq.(40), then the normalized importance 

weights can be calculated by using Eq.(41). 
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It can be seen when Eq.(41) is examined that it 

contains important weights associated with sequential time 

steps. The expressions  0: 1 1: 1|k kp x z   in the nominator and 

 0: 1 1: 1|k kq x z   in the denominator are in fact the posterior 

pdfs of the previous time step. Therefore, Eq.(41) can be 

re-written after a simple arrangement as below: 

 

         

 1

1

1

| |

| ,

i i kk k

k k

k k k

kz xp x p x
w x w x

q x x z








          (41*) 

 

Particle Filtering in the literature is performed based 

on various methods. The determinative property of 

distinctness of those methods is the assumption they 

assigned. One of the simplest but on the other hand 

reasonably effective methods for applications especially 

with real-time constraint is the Bootstrap PF or 

Condensation algorithm. In BPF, the expression 

 1| ,k k kq x x z  in Eq.(41) is selected as the equivalent of the 

temporal prior as below: 

 

   1 1| , |k k k k kq x x z p x x                    (42) 

where the symbol  is meant as selection operation. Thus, 

the particle filter problem formulation based on recursive 

Bayesian estimation is obtained as in Eq.(43): 

 
       1 |
i i

kk k kw x w x zp x                   (43) 

 

In typical particle filtering, there are three main steps. 

In the first step, certain numbers of particles with initial 

values are created for hidden parameters depending on the 

problem to be solved or the dynamic system under 

evaluation. Each of these particles is constructed as a 

random variable array (i.e. random vector) consisting of 

requested system parameters and associated with a weight 

which is equal to 1 N  where N indicates the number of 

particles. For some convenient applications, the initial 

weights of the particles may be determined in a way to be 

different from each other using existing knowledge about 

the system before receiving any measurements.  

The second step of the PF algorithm is called 

importance sampling step. This is the most significant step 

of the algorithm affecting the performance. In this step, the 

particles are sampled from the importance function 

selected (i.e., the particles are moved through the dynamic 

model) and the weights are calculated according to the 

observation or measurement model developed for the 

problem. It is very crucial to make use of accurate 

operating dynamic and measurement models in this step, 

because the particles containing the requested system 

parameters get their new values according to the dynamic 

model and the weights of particles are obtained by 

inferring suitable information regarding the system 

depending on how likely the measurements are given the 

system states. Improper formation of dynamic and/or 

measurement models definitely leads to unwanted results. 

For each time step or state of the observed dynamic 

system, there exists a particle set. Particles having larger 

weights are retained with increasing their numbers in 

proportion to their weights; on the other hand particles 

with smaller weights are discarded in each time step. 

Depending on the solution criteria of the problem tackled, 

the whole set or a single particle is evaluated after 

normalizing the weights in obtaining the values of 

requested system parameters using some well-known 

techniques such as mean square error (MSE). 

The last step of the PF algorithm contains a 

resampling process. This step is largely required due to the 

sample impoverishment arising from recurring weight 

obtainment process which causes a group of particles have 

negligible weights in time [12]. The impoverishment case 

is precluded by resampling the particles based on a pre-

defined threshold called degeneration coefficient. If the 

number of effective particles becomes smaller than this 

threshold, a new particle set having equally-weighted 

particles is sampled from the current particle set by using 

some techniques such as multi-nominal, stratified, residual 

and systematic resampling schemes. Thus, it is guaranteed 

that both effective and marginal particles are allowed to be 

in existence proportionately. A performance comparison 

for common resampling techniques can be found in [32] 

and [34]. A graphical illustration of particle filtering 

algorithm is given in Fig. 1. 
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Fig. 1. Graphical illustration of PF algorithm. 

 

Particle Filter is capable of supporting multiple 

hypotheses theoretically. This means that a posterior pdf 

with more than a single mode can be approximated by 

using PF. In particle filtering on the other hand, there exist 

no restrictive assumptions with regards to the operation of 

the dynamic system. State transitions may be non-linear 

and the process and measurement noises do not have to be 

Gaussian. Within this context, a well-structured PF based 

method may provide acceptable solutions to most of the 

real-world problems including real-time tracking. 

It can clearly be seen as Eq.(43) is examined that the 

importance weights in each time step depend on the 

weights of previous time step and the current likelihood 

represented by  | kkp z x . The likelihood is defined as the 

value of the extent to which the measurements received via 

available sensors in each time step suit the actual state 

dynamics. The acceptable solution to the problem under 

investigation is approximated more as this suitability rate 

is increased. Besides that, it can be understood that the 

importance weights have to get possession of some initial 

values.   

 

 

4. PF based multi-ball tracking: an example 
 

Formulation of an example problem is presented in 

this section with solution steps within the scope of particle 

filtering. It is aimed to track the position of three balls 

having different diameters and moving unrestrainedly on a 

static background. The problem is so called multi-ball 

tracking (M-BT). The main purpose to prefer such a 

problem is to make easier of understanding the operation 

of PF algorithm. The solution of M-BT problem is 

provided by implementing the particle filter sequential 

importance resampling (PF SIR) algorithm given below:  

 

 

 

Problem-oriented particle structure containing the 

requested system parameters is needed at first in particle 

filtering. A M N O   dimensional matrix is formed as 

particle to represent candidate solutions for M-BT 

problem. In such a particle structure, M  is the dimension 

of state vector, N  is the number of particles and O  is the 

number of objects to be tracked.  

The state vector of MB-T problem is defined in 

Eq.(44) where
xp ,

yp  are the horizontal and vertical 

positions of an arbitrary ball and
xv ,

yv are the velocities 

through those directions. 

 
T

x y x yX p p v v                           (44) 

 

In particle filtering, it is required to form dynamics 

and observation models fitting the target problem. The 

evolution of particles in time is expressed by dynamics 

model. Observation model, on the other hand, is used to 

extract reference information from the data obtained by 

using available sensor measurements. Similar to many real-

world problems, noise is added to both models in M-BT 

problem due to the uncertainties in both system process 

and measurements.  Several motion models may be applied 

in non-linear tracking problems such as constant velocity; 

constant acceleration, Brownian or more advanced ones 

[33]. Dynamics model in M-BT problem given in Eq.(45) 

is selected as constant velocity motion model with 

Gaussian noise for simplicity. 
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In Eq.(45), k  is the time step and ,(0; )x y   is the 

Gaussian process noise with zero mean and covariance 
x  

and y through horizontal and vertical directions 

respectively. The planar position of each ball at each time 

Step 1: Initialization 
 Specify noise parameters. 
 Create particle set and assign initial weights. 

Step 2: Importance Sampling 
 Increase time step. 
 Move particles according to the dynamics model. 
 Receive measurements and extract information. 
 Calculate observation likelihood (particle weights). 
 Obtain and Check solution. 

 Case 1: Solution OK. Quit. 
 Case 2: Solution is not enough. Check ESS. 

 Case 1: Enough effective particles. Go to Step 2. 
 Case 2: Need resampling. Go to Step 3. 

Step 3: Resampling 
 Resample particles. 
 Reset particle weights. 
 Go to Step 2. 
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step in M-BT problem is obtained via this dynamics 

motion model. For instance, the vertical position of a ball 

at time step k is calculated by adding its vertical position 

and velocity at time step 1k   and the process noise. The 

initial positions of the particles are specified before the 

first time step and the dynamics model is used to make a 

prediction at each time step without receiving any sensor 

measurements.  

In M-BT example, the initial positions of each particle 

set for each balls are specified at the center of the 

background stage with different noise covariance. 

The video containing the free motions of the three 

balls is used as the observation resource in M-BT example. 

Each frame of this video is accepted as a time step. The 

planar positions of the balls are obtained by basic image 

processing techniques for each frame. However, upon the 

assumption of the sensory information is not certain, 

Gaussian measurement noise is added to the detected 

positions of the balls and the observation model is formed 

with Eq.(46).  
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                (46) 

 
( )k

xc  and 
( )k

yc  in this observation model are the 

horizontal and vertical positions of a single ball at time 

step k . These positions are obtained by using basic 

thresholding and MATLAB’s Image Processing Toolbox 

command RegionProps:Centroid. Distinction of the balls 

from each other is provided by sorting and matching the 

different area information acquired with the use of 

RegionProps:Area command. (0; )   here is Gaussian 

measurement noise with zero mean and covariance  . 

Planar positions of the balls at each time step are obtained 

using this observation model in M-BT example. 

In order to calculate observation likelihood in particle 

filtering, it is necessary to find a similarity measure or a 

kind of performance metric. In video based tracking, 

comparison of tracked target trajectory and trajectory of 

the ground truth is typically accepted as a performance 

metric [16]. In M-BT problem, the Euclidean distance 

between ball positions obtained using observation model 

and the generated particle positions by dynamics model is 

employed as the similarity measure at each time step.  The 

similarity measure equation is given by Eq.(47). 
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where ( )kL  is the distance matrix at time step k , 
( )

i

k

xp  and 

( )

i

k

yp  are the horizontal and vertical positions of i th 

particle and N  is the number of particles. Calculation of 
( )kL is repeated for all balls, however the object index is 

omitted here for ease of notation. The calculated distances 

may be very far from each other depending on the problem 

tackled. Therefore, it is typically applied a normalization 

process in order to keep the calculated values within an 

interval as well as to instantly observe the post-process 

changes and to provide a basis for easier subsequent 

processes. In M-BT example, the calculated distances are 

normalized into [0,1]  interval. 

Observation likelihood values or particle weights in 

other terms in M-BT problem are obtained from the 

distance matrix so as to ensure inverse proportionality 

between ball-to particle distance and particle weight. 

Particle weights are calculated by Eq.(48) which produces 

high likelihood for short distances and vice versa.  
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In Eq.(48), 
( )kLh  is defined as the particle weights 

matrix at time step k , ( )k
iL  is the normalized distance of 

i th particle, N is the number of particles and   is the 

measurement noise covariance. In M-BT example, 

different   values are selected for each ball object so as 

to investigate the effect of measurement noise to the 

results. 

After obtaining the particle weights, the posterior pdf 

is reached in proportion to those weights in the previous 

time step in PF algorithm. (See. Eq.(43)). The expected 

solution for M-BT problem is to get an estimation of 

planar position for each ball at each time step. The mean, 

weighted mean of the position values carried by the 

particles or the position values of the particle having the 

highest weight may be accepted as the solution of the 

problem. In M-BT problem, the first one of these options 

is selected. 

The steps of PF algorithm may be repeated up to end 

of a pre-defined duration or until reaching a certain 

threshold value. In M-BT example, the algorithm is 

applied for 120  time steps and results are obtained 

according to this condition. 

The last but an optional step of PF algorithm is called 

“resampling” step. As it is mentioned in Section 3, 

resampling is a step applied in case of the particles are 

increasingly exposed to degeneration and become 

ineffective during the simulation time. In resampling step, 

the insignificant particles are discarded by providing the 

higher-weighted particles are sampled more in conjunction 

with the occurrence of a situation such that the effective 

particle size (ESS) effN , becomes smaller than the 

degeneration coefficient
thN . Once this criterion 

( )eff thN N  is met, a new set of particles is reproduced 

from the existing set using some resampling techniques in 

which the samples are regarded in proportion to their 

weights. Given in Eq.(49) and Eq.(50) respectively, the 

values used for both effN  and 
thN  in M-BT example, are 

same as the ones shown commonly in the particle filtering 

literature.  



A closer look to probabilistic state estimation – case: particle filtering                                                    531 

 

 
2

( )

1

( ) 1
N

k
i

i

Lh

k

effN






                           (49) 

 

2 3thN N                               (50) 

 

N is the number of particles, 
thN  is the degeneration 

coefficient,
( )k

effN is the ESS at time step k  and ( )k

i
Lh is the 

weight of i th particle in Eq.(49) and Eq.(50). 

In the PF implementation of M-BT example, multi-

nominal resampling (MnR) which is used due to the fact 

that it is considered as the simplest resampling method 

among others and thus more straightforward for 

comprehension. An illustration of the first iteration of MnR 

technique for 10 samples is given in Fig. 2. 

 

 

 
 

 

Fig. 2.  Graphical illustration of Multi-nominal Resampling. 

 

 

In MnR method, it is considered that each of the 

particles in the existing particle set is placed on a wheel so 

as to cover an angular region in proportion to its weight. 

Because the sum of all particle weights in the set is equal 

to1 , one can simply behold that a particle with 

weight 0.5 covers180 on the wheel. After the placement 

process, N independent random samples uniformly 

distributed in the interval (0,1)  are generated. Starting 

from the beginning point of the first particle’s region, each 

random sample value is compared with the cumulative 

weight of corresponding particles. The particle which 

coincides with the value of random sample is selected for 

the new set. This process is repeated for the number of 

particles ( N ). For each loop the beginning point of the 

selected particle’s region is accepted as the starting point. 

As it can be understood from this simple algorithm, 

particles with higher weights tend to be selected more than 

the ones with lower weights. After the process of creating 

the new set of particles, all the weights of these particles 

are set to1 N . Hence, higher weighted particles form 

higher percentage within all particles and it becomes more 

possible to get better results at each time step. 

One cycle of the PF algorithm ends with the 

resampling step. The algorithm is operated passing the 

next time step. 

 

 

5. Results and evaluation 
 

Multi-ball tracking problem solution was implemented 

using particle filter sequential importance resampling 

algorithm on a two-minute (120 frame) video with 

320 240px  frame size containing three freely moving 

balls. Planar positions of the balls were initialized by the 

vector  30 50 144 222 287 92
T

 in which each ordered 

pair refers to horizontal and vertical positions of green, 

orange and magenta balls respectively. 

The initial planar positions of all particles in each 

particle set belonging to a single ball were randomly 

generated around the vector  160 120
T

 which was the 

centroid of any video frame.  

The process noise variances for horizontal and vertical 

directions were selected differently for both positions and 

velocities as well as for each ball. Such a specification was 

preferred in order to observe filtering performance 

explicitly depending on different parameters. The 

covariance matrix for each ball was formed by the vector 

x y x y

T

p p v v    
 

as below: 

 

 80 60 40 30
T

green   

 40 30 20 15
T

orange   

 160 120 80 60
T

magenta   

 

In M-BT example, measurement noise variances were 

also initialized with different values for each of the balls. 

The measurement noise vector was formed 

as  200 300 400
T T

g o m      , in which element was 

refer to green, orange and magenta balls respectively.  

During the implementation process of M-BT example, 

a number of executions with changing particle counts were 

performed after specifying initial planar positions, and 

process and measurement noises. However, only results of 

executions with particle counts 50 , 250 and 1000  are 

depicted here due to consideration that such a number of 

visualizations provide enough insight for distinguishing the 

effect of different number of particles ( N ). The 
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movements of particle sets for  50,250,1000N  at 

frames 1,5,9,13  are shown in Fig. 3. 

 

 
Fig. 3.  M-BT problem simulation results. 

 

It can be clearly understood from Fig. 3 that all 

particle sets get closer to the balls as the number of 

particles increases. However, because of different process 

and measurement noise variances, each particle set 

approximates with different speed rate. The selected initial 

values and noise parameters are considered as distinctive 

performance measures for almost all filtering problems. 

Therefore, it is strongly required that these values and 

parameters to be properly specified according to the 

characteristics of the problem attacked. 

Trajectories of the balls and associated particle 

filtering estimates are illustrated in Fig. 4, 5 and 6 

consecutively for  50,250,1000N   particles. It can be 

seen when Fig. 4, 5 and 6 examined together that particle 

filtering estimates remain smoother tracks and get more 

accurate values corresponding with real trajectories of the 

balls as the number of particles goes from 50 to 1000. On 

the other side, the difference between approximation rates 

is also in evidence.  

 
Fig. 4.  Ball trajectories and PF estimates for N = 50. 

 
 

Fig. 5.  Ball trajectories and PF estimates for N = 250. 

 

 
 

Fig. 6.  Ball trajectories and PF estimates for N = 1000. 

 

The root mean square error values are visualized in 

Fig. 7 for  50,250,1000N   particles. A detailed version 

of RMS errors is given in Table 1 with mean values. The 

simulation durations are also listed for all execution 

attempts. It can be extracted from the results in Table I that 
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simulation duration increases as the number of particles 

increases while the mean RMS error decreases. An 

acceptable solution for the M-BT problem may be the case 

F. In this case, each of the mean RMS error values is 

smaller than 1 while the simulation duration remains at a 

reasonable level. As it can be observed from the results 

provided with Table 1 mean RMS error values achieved 

for magenta ball are the least ones for all execution 

attempts except the case A. Consequently, in PF 

implementation of M-BT problem, selected initial values 

and noise parameters for the magenta ball can be 

considered as the best fitting ones.  

 

 
Fig. 7.  RMS error values for PF estimates. 

 

 

Table 1. Mean Rms error values. 
 

Case Particles Mean RMS Error (for balls) 
Time 

(sec) 

  Green  Orange  Magenta   

A 5 23.21 26.59 23.81 2.767 

B 10 10.43 14.71 9.19 2.820 

C 25 3.6 6.43 3.13 2.842 

D 50 2.31 4.61 1.94 2.900 

E 100 1.46 2.87 1.3 3.002 

F 250 0.89 1.66 0.81 3.332 

G 500 0.61 1.16 0.58 3.811 

H 750 0.51 0.86 0.45 4.433 

I 1000 0.43 0.75 0.39 4.835 

J 5000 0.19 0.32 0.17 13.496 

K 10000 0.13 0.23 0.12 24.523 

 

 

6. Conclusion 
 

Non-linear state estimation is a usual problem for a 

great number of research fields including almost all 

engineering branches, life and even social sciences. 

Particle filtering has been a popular and frequently 

referenced method over the recent years for addressing 

such type of problem. However, it should be noted that 

solutions provided by PF is mostly not optimal but 

reasonably approximate in case of operating with proper 

dynamics and observation models according to the 

particular problem.  

Problem-depended structure of particle filtering 

method and concentrated presentation of papers by senior 

researchers lead to deficiency for new researchers in 

comprehension of the method which has an extensive 

probabilistic background. In this study, an inclusive and 

step by step approach is adopted in revealing the 

underlying theoretical principles of PF in order to 

accommodate new researchers with the field of non-linear 

estimation. The solution of an example problem is also 

provided concerning multi-object tracking with the initial 

values of parameters, solution steps and comments on 

results which has a potential of forming an adequate 

foundation for new researchers to address non-linear state 

estimation problems of various different fields.  
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